Dr. Thomas Pawlaschyk

Acad. degree
Dr. rer. nat.
Position
PostDoc
Area of studies
Pure Mathematics/Complex Analysis
Office
G 15.11
Office hours
by arrangement
Phone
+49 (0)202 439 5406
pawlaschyk[at]uni-wuppertal.de
Address
University of Wuppertal
School of Mathematics and Natural Sciences
Gauss Str. 20
D-42119 Wuppertal
Research
ORCID: 0009-0004-0494-3273
Publications
- Kim, K.-T.; Pawlaschyk, T., A Selection Theorem for the Carathéodory Kernel Convergence of Pointed Domains, submitted/in revision (2024) (https://arxiv.org/abs/2407.10280)
- Ohsawa, T.; Pawlaschyk, T., Analytic Continuation and q-Convexity, SpringerBriefs in Mathematics, Singapore (2022) (https://doi.org/10.1007/978-981-19-1239-9)
- Pawlaschyk, T; Shcherbina, N. V., Foliation of continuous q-pseudoconcave graphs, Indiana Univ. Math. J. 71 No. 4 (2022), 1627–1648 (https://arxiv.org/abs/2004.01797)
- Pawlaschyk, T.; Zeron, E. S., On convex hulls and pseudoconvex domains generated by q-plurisubharmonic functions, part III, J. Math. Anal. Appl., Vol. 471 (2019), no. 1-2, 73–87 (https://doi.org/10.1016/j.jmaa.2018.10.064)
- Pawlaschyk, T.; Wegner, S.-A., Engaging students in conjecturing through homework in Real Analysis and Differential Equations, (2019) IJEMST, vol. 51(3), p.1-10 (https://doi.org/10.1080/0020739X.2019.1656832)
- Pawlaschyk, T.; Zeron, E. S., On convex hulls and pseudoconvex domains generated by q-plurisubharmonic functions, part II, Bol. Soc. Mat. Mex. (3) 22 (2016), no. 2, 367–388 (https://doi.org/10.1007/s40590-016-0123-9)
- Pawlaschyk, T., Bergman-Shilov boundary for subfamilies of q-plurisubharmonic functions. Ann. Polon. Math. 117 (2016), no. 1, 17–39 (https://doi.org/10.4064/ap3695-1-2016)
- Pawlaschyk, T., On some classes of q-plurisubharmonic functions and q-pseudoconcave sets, Dissertation, Bergische Universität Wuppertal (2015) (https://elekpub.bib.uni-wuppertal.de/urn/urn:nbn:de:hbz:468-20151210-101726-1)
- Pawlaschyk, T.; Zeron, E. S., On convex hulls and pseudoconvex domains generated by q-plurisubharmonic functions, part I, J. Math. Anal. Appl. 408 (2013), no. 1, 394–408 (https://doi.org/10.1016/j.jmaa.2013.05.074)