Topological invariants and Holomorphic mappings

Kang-Tae Kim

Department of Mathematics POSTECH, South Korea

Monday, 21 October 2024 Wuppertal, Germany R. E. Greene, K.-T. Kim and N. V. Shcherbina: "Topological invariants and Holomorphic Mappings" *Comptes Rendus Mathématique* (Institut de France), Vol. 360 (2022) p. 829-844.

https://doi.org/10.5802/crmath.336

ℓ₁-invariant

 $\Omega \subset \mathbb{C}^n$, a Kobayashi hyperbolic domain. γ a piecewise C^1 curve in Ω . $L(\gamma) =$ the Kobayashi length of γ . Then

$$\ell_1(\Omega) := \inf\{L(\alpha) : \alpha \not\sim *\}.$$

ℓ_1 for annuli

Ann
$$(0,R)=\left\{z\in\mathbb{C}\colon \frac{1}{\sqrt{R}}<|z|<\sqrt{R}\right\}$$
 $\ell_1\left(\mathrm{Ann}\left(0,R\right)\right)=\frac{\pi^2}{\ln R},$

(Note: the conformal modulus.)

J. Hadamard; R. de Possel

Theorem (Hadamard 1890±)

The Annuli A(0, r, R), A(0, s, S) in the complex plane are conformally equivalent if, and only if, r/R = s/S.

J. Hadamard; R. de Possel

Theorem (Hadamard 1890±)

The Annuli A(0, r, R), A(0, s, S) in the complex plane are conformally equivalent if, and only if, r/R = s/S.

Theorem (R. de Possel, 1933)

For annuli A(0, r, R), A(0, s, S), there exists an injective holomorphic map $f: A(0, r, R) \rightarrow A(0, s, S)$ such that f(A(0, r, R)) separates the boundaries of A(0, s, S), if and only if $R/r \leq S/s$.

An extension

Theorem (Gr.-K.-Shch.)

For hyperbolic manifolds M and N with $\pi_1(M) \neq 0$, if there is a holomorphic map $f: M \to N$ induces $f_\star: \pi_1(M) \to \pi_1(N)$, an injection on homotopy, then $\ell_1(M) \geq \ell_1(N)$.

Tubular neighborhoods

For r > 0 sufficiently small,

$$T^n(r) := \bigcup_{t \in \mathbb{R}} \{(z_1, \dots, z_n) \in \mathbb{C}^n : \ |z_1 - e^{it}|^2 + |z_2|^2 + \dots + |z_n|^2 < r^2\}.$$

Theorem

If $f: T^n(r) \to T^m(s)$ is holomorphic and 0 < s < r < 1, then f is homotopic to a constant map.

ℓ_k -invariant, k > 1

• (X, d) a metric space. $\delta(A) = \sup_{p,q \in A} d(p,q)$. Recall the Hausdorff k-measure for (X, d) is defined by

$$\mu_d^k(A) = \sup_{\epsilon > 0} \inf \{ \sum_{i=1}^{\infty} (\delta(A_i))^k : A = \bigcup_{i=1}^{\infty} A_i, \delta(A_i) < \epsilon \}.$$

• Call a continuous map $f: S^k \to U$ Hausdorff-Kobayashi k-rectifiable if

$$\mu_{\mathrm{Kob},U}^{k}(f(S^{k}))<\infty.$$

• We define:

 $\ell_k(U)$:= the inf of H-K k-measures of all the H-K rectifiable representatives of the nontrivial free homotopy classes of $f \colon S^k \to U$.

Tubular neighborhoods of S^k , k > 1

Lemma

 S^k , C^2 , totally real in \mathbb{C}^n and contained in a bounded domain $\Omega \subset \mathbb{C}^n$. Assume that $S^k \not\sim *$. There exists R such that for any $r \in (0, R)$,

$$T_r := \bigcup_{x \in S^k} B^n(x,r)$$

satisfies $\ell_k(T_r) > 0$.

Moreover, · · ·

G-K-Shch on $\ell_k(U)$

For s, r_2 sufficiently small, the following hold:

Theorem

Let $U \subset \mathbb{C}^m$, $V \subset \mathbb{C}^m$ be bounded domains with $\pi_1(U) \neq 0$. If there is a holomorphic $f: U \to V$ injective on homotopy, then $\ell_k(T_r) \geq \ell_k(T_s)$.

G-K-Shch on $\ell_k(U)$

For s, r_2 sufficiently small, the following hold:

Theorem

Let $U \subset \mathbb{C}^m$, $V \subset \mathbb{C}^m$ be bounded domains with $\pi_1(U) \neq 0$. If there is a holomorphic $f: U \to V$ injective on homotopy, then $\ell_k(T_r) \geq \ell_k(T_s)$.

Corollary

If $r_1 > r_2$ and if $f: T_{r_1} \to T_{r_2}$ is holomorphic, then f is homotopic to a constant map.

Tubular neighborhoods of general M; Degrees

Let M a compact connected smooth (C^2 suffices) submanifold without boundary of \mathbb{R}^N .

 $(r > 0 \text{ sufficiently small}). g: M \rightarrow T_r(M) \text{ smooth.}$

 $\pi \colon T_r(M) \to M$ the orthogonal projection. Then define by

$$\deg(g) := \deg(\pi \circ g)$$

Tubular neighborhoods of general M; Degrees

Let M a compact connected smooth (C^2 suffices) submanifold without boundary of \mathbb{R}^N .

 $(r > 0 \text{ sufficiently small}). g: M \rightarrow T_r(M) \text{ smooth.}$

 $\pi : T_r(M) \to M$ the orthogonal projection. Then define by

$$\deg(g) := \deg(\pi \circ g)$$

If $G: T_{r_1} \to T_{r_2}$ continuous, then define by

$$\deg G := \deg(G \circ incl.).$$

(If M is not orientable, use \mathbb{Z}_2 -degree.)

On Degrees

Theorem

Let M a C^2 , compact, connected, totally real submanifold of \mathbb{C}^n . Then there exists R > 0 such that, if 0 < r < s < R and if $F: T_s(M) \to T_r(M)$ is holomorphic then, $\deg F = 0$.

Contractability of bounded domains

Theorem

 $U \subset \mathbb{C}^n$, a bounded domain with C^2 boundary. If $\exists f: U \to U$ holomorphic with $f(U) \subseteq U$ with $f_*: \pi_k(U, z) \to \pi_k(U, f(z))$ isomorphic, for all k = 1, 2, ..., then U is contractible.

A technique

Lemma (GKShch, Sect. 9)

If U, V bounded domains in \mathbb{C}^n with $U \subseteq V$ then there exists 0 < c < 1 such that

$$F_V^{Kob}(p, v) \leq c F_U^{Kob}(p, v), \ \forall (p, v) \in U \times \mathbb{C}^n.$$