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Let's begin with the archetypal Picard-type theorem. This requires a definition.

DEFINITION Let Z be a complex m'fld.and Y Cyom Z. We say that Y is
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Janbd. V), of pin Z with V,, € U,, s.t.
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RESULT (Kiernan): Let Z be a complex manifold and let Y Cqom Z be relatively
compact. Suppose Y is hyperbolically imbedded in Z.

@ Then, every f € O(D*,Y) extends as a map f € O(D, Z).

© Let X be a complex m'fld., k = dim¢(X). Let A & X be an analytic
subvariety of X of dim. (k — 1) having at most normal-crossing singularities.
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RESULT (Kiernan): Let Z be a complex manifold and let Y Cqom Z be relatively
compact. Suppose Y is hyperbolically imbedded in Z.

@ Then, every f € O(D*,Y) extends as a map f € O(D, Z).

© Let X be a complex m'fld., k = dim¢(X). Let A & X be an analytic
subvariety of X of dim. (k — 1) having at most normal-crossing singularities.
Then, every f € O(X \ A,Y) extends as f € O(X, Z).

Part (1) of the above result with Z = CP!,Y = C\ {0, 1} is implied by the Big
Picard Theorem.
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Let's begin with the archetypal Picard-type theorem. This requires a definition.

DEFINITION Let Z be a complex m'fld.and Y Cyom Z. We say that Y is
hyperbolically imbedded in Z if for each pt.p € Y and for each nbd. U, of pin Z,
Fanbd.V, of pin Z with V, €U, st. Ky (V,NY, Y \U,) > 0.

y

RESULT (Kiernan): Let Z be a complex manifold and let Y Cqom Z be relatively
compact. Suppose Y is hyperbolically imbedded in Z.

@ Then, every f € O(D*,Y) extends as a map f € O(D, Z).

© Let X be a complex m'fld., k = dim¢(X). Let A & X be an analytic
subvariety of X of dim. (k — 1) having at most normal-crossing singularities.
Then, every f € O(X \ A,Y) extends as f € O(X, Z).

Part (1) of the above result with Z = CP!,Y = C\ {0, 1} is implied by the Big
Picard Theorem. Hence, extension results of the above kind are called
Picard-type extension theorems.
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,Why unbounded target domains?

The principal result of this talk is motivated by the desire to remove the relative
compactness assumption in Kiernan's results.
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,Why unbounded target domains?

The principal result of this talk is motivated by the desire to remove the relative
compactness assumption in Kiernan's results. The most evident conjectured
“Improvement” proves unsatisfying because:

@ Very hard to determine when a non-relatively-compact domain is
hyperbolically imbedded.

@ A characterz'n. by Joseph—Kwack exists (who also prove a Picard-type
theorem) but their characterz'n. is function-theoretic; not geometric.

To formulate geometric condn’s. on Y & Z—Y not relatively compact—s.t. Y
Is hyperbolically imbedded, a good place to start is Z = C", Y = (2, (2 a domain.
Only known examples of unbounded hyperbolically imbedded €2 & C™:

» C™ \ (union of 2n hyperplanes “strongly” in general position),

» Complements of certain divisors.

Now, we have no choice but for €2 to be unbounded, because:
@ bounded domains are already known to be hyp.imb.in C",

@ Picard-type extension problems—with bounded domains as target — become
trivial because of Riemann’s removable singularities theorem!
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THEOREM 1 (Bharali-B., 2024): Let Q2 C4om C™, n > 2, be unbounded,
K-hyp., with C*-smooth boundary. Assume 3 a C*-smooth closed 1-submf’ld. S of

0Q s.t.w(0N) C S. Assume Vp € w(0S2), 3 a nbd. U, of p, m, > 2 s.t.
ZLa(&v) 2, dist(€,S)™e 2 |jv]|? Vv € He(0), V€€ (0QNU,) \ S.
@ Then, Q) is hyperbolically imbedded in C™.

© Picard type extension: Let X be a complex m'fld.,, A & X be an analytic

subvariety of X of codim.1 having at most normal-crossing smgu/ar/tles
Then, every f € O(X \ A, Q) extends as a cont. map f: X — Q

Here:
He (09) := Te (0Q) N iTe (0),

Za(&;+) :=the Levi form at £ € 912.

Though £ needs a choice of def’'n. function for its determination, two def'n. functions differ by
a C?-smooth factor non-vanishing in a nbd. of 9. Given the equation for H¢(02) w.r.t. each

def'n. function, Levi-form ineq. makes sense.
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The following result may give a sense of where the hypothesis of Theorem 1
originates.
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A supporting result

The following result may give a sense of where the hypothesis of Theorem 1
originates.

THEOREM 2 (Banik-B., 2024): Let 2 C C", n > 2, be a bdd. pscvx. domain with
C?-smooth bdry. Assume 3 a C?>-smooth closed submf'ld. of O s.t. S is
totally-real and s.t. w(92) C S. Suppose I3m > 2 s.t.
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Then, dc > 0 s.t.
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A supporting result

The following result may give a sense of where the hypothesis of Theorem 1
originates.

THEOREM 2 (Banik-B., 2024): Let 2 C C", n > 2, be a bdd. pscvx. domain with
C?-smooth bdry. Assume 3 a C?>-smooth closed submf'ld. of O s.t. S is
totally-real and s.t. w(92) C S. Suppose I3m > 2 s.t.

Lo(&0) > dist(€, 9)2||v||? Vo € He(9), Y€€ I\ S.

Then, ¢ > 0 s.t.

ko(z;v) > ¢ ol V(z,v) € Q x C",

= (5Q(Z))1/m

Recall: if 2 Cyom C™, then the Kobayshi pseudometric
ko : THOQ =20 x C* — [0, 00) is:
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THEOREM 2 (Banik-B., 2024): Let 2 C C", n > 2, be a bdd. pscvx. domain with
C?-smooth bdry. Assume 3 a C?>-smooth closed submf'ld. of O s.t. S is
totally-real and s.t. w(92) C S. Suppose I3m > 2 s.t.

Lo(&0) > dist(€, 9)2||v||? Vo € He(9), Y€€ I\ S.

Then, ¢ > 0 s.t.

ko(z;v) > ¢ ol V(z,v) € Q x C",

= (5Q(Z))1/m

Recall: if 2 Cyom C™, then the Kobayshi pseudometric
ko : THOQ =20 x C* — [0, 00) is:

ko(z; X) :=inf{a>0:3¢: D — Qs.t.¢(0) = 2,29’ (0) = X }.
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A supporting result

The following result may give a sense of where the hypothesis of Theorem 1
originates.

THEOREM 2 (Banik-B., 2024): Let 2 C C", n > 2, be a bdd. pscvx. domain with
C?-smooth bdry. Assume 3 a C?>-smooth closed submf'ld. of O s.t. S is
totally-real and s.t. w(92) C S. Suppose I3m > 2 s.t.

Lo(&0) > dist(€, 9)2||v||? Vo € He(9), Y€€ I\ S.

Then, ¢ > 0 s.t.

ko(z;v) > ¢ ol V(z,v) € Q x C",

= (59(2))1/771

Recall: if 2 Cyom C™, then the Kobayshi pseudometric
ko : THOQ =20 x C* — [0, 00) is:

ko(z; X) :=inf{a>0:3¢: D — Qs.t.¢(0) = 2,29’ (0) = X }.

Largeness of kqo(z;u) encodes the difficulty of finding “big” 2-valued analytic
discs tangent to the direction u.
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.Caveats on Theorem 2

The last estimate may seem unsurprising. But such estimates that are
correctly argued for {2 weakly pscvx. domains don't provide an explicit
exponent of dq in the bound for kq.
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To elaborate:

@ For bdd. weakly pscvx. finite-type domains €2 with 9€) not real analytic,
similar lower bounds for kg have been claimed on multiple occasions —
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.Caveats on Theorem 2
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.Caveats on Theorem 2

The last estimate may seem unsurprising. But such estimates that are
correctly argued for {2 weakly pscvx. domains don't provide an explicit
exponent of dq in the bound for kq.

To elaborate:

@ For bdd. weakly pscvx. finite-type domains €2 with 9€) not real analytic,
similar lower bounds for kg have been claimed on multiple occasions—each
such claim has, eventually, relied on the difficult half of Catlin's work on

finite-type domains.

@ Our method relies on the regularity theory for the complex Monge—Ampere
equation to derive lower bounds for k. Theorem 2 is the prototypical
illustration of our method.
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. lechnical input |: the visibility property

The raw idea of visibility involves a complete metric space (X, d):
(i) “nice” enough to admit geodesic lines through = # y € X,
(i2) an abstract “boundary” bd(X) determined by d,

(i1) a topology on X := X LiIbd(X) s.t. X is Hausdorff & the inclusion j: X < X is a
homeo., and
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The raw idea of visibility involves a complete metric space (X, d):

(i) “nice” enough to admit geodesic lines through = # y € X,

(i2) an abstract “boundary” bd(X) determined by d,

(4i) a topology on X := X LI bd(X) s.t. X is Hausdorff & the inclusion j: X < X is a
homeo., and

(iv) whose geodesics have the following behaviour as seen in (H?, p):

Given § #n € R & Ug > & (resp.
U, > n) H2-open nbhds.with U¢N y
U, =a:
(%) K Cept. H? s.t. every “B %

geodesic originating in Ug & -

ending in U,, intersects K. U, uy|

e o o )
¢ \on/ x

(X, bd(X)) replacing (H?,R), N

(%) is seen, e.g.when (X, bd(X)) = (a CAT(0) space, its visual boundary).
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.The visibility property, cont'd.

We adapt the above framework: it recognises the fact that for (X, d) = (2, Kq),
2 Cdom C", very hard to estimate K and know if (€2, Kq) is Cauchy-complete.
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(I1) Take bd(£2) = 92 (which is at least easy to understand).
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@ kqa(o(t);o’(t)) < A forae.tel.

(A, k)-AGs serve as substitutes of geodesics because, if ) is as above, then for
any £ > 0 and for any z # w € , 3 a (1, K)-AG joining z, w (Zimmer—B., 2022).

DEFINITION. Let 2 C C" be a Kobayashi hyperbolic domain. We say that 0f) is
visibile w.r.t. the Kobayashi distance (briefly, 0S) is visibile) if for any £ # n € 012,
dnbds.Us &, U, 31, Ug ﬂUn — g s.t. foreach A\ > 1, each Kk > 0,

JK Cept 2 s.t. the image of any (A, k)-AG o : [a,b] — 2, with

o(a) € Ug,o(b) € U, intersects K.

y
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. lechnical input |l: Kobayashi metric estimates

A function w : [0, 00) — [0,00) is called a modulus of continuity if it is concave,
monotone increasing, and s.t. lim,_,o+ w(x) = w(0) = 0.
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¢ : 00 = R, Juy : QO —Rs.t. ug|q solves the complex Monge—Ampére equation
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lug (21) — ug(22)| < Cpw(fl21 — 22ll) Ve1,22 € Q,

for some const. Cy > 0.
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. lechnical input |l: Kobayashi metric estimates

A function w : [0, 00) — [0,00) is called a modulus of continuity if it is concave,
monotone increasing, and s.t. lim,_,o+ w(x) = w(0) = 0.

THEOREM 3 (Banik—-B., 2024): Let Q2 C C*, n > 2, be a bdd. domain. Suppose

1 a modulus of continuity w : (|0,00),0) — (|0,00),0) and that, for each Lipschitz

¢ : 00 = R, Juy : QO —Rs.t. ug|q solves the complex Monge—Ampére equation
(ddu)™ = 0,

ula = @,

and satisfies
lug (21) — ug(22)| < Cpw(fl21 — 22ll) Ve1,22 € Q,

for some const. Cy > 0. Then Jc > 0 s.t.
| v]|

ka(z;v) > ¢ o(0a(2)) 12

V(z,v) € Q x C".

4
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, I he proof of Theorem 3

@ Take ¢: 90 3 z — —2||z||? and let uy be as given by our hypothesis.
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, I he proof of Theorem 3

@ Take ¢: 90 3 z — —2||z||? and let uy be as given by our hypothesis.
@ Define ®(2) := uy, + ||2]|%, z € Q.

@ Define Q, :={z € Q:da(z) > 1/2"}. Let vyp: €, is connected Vv > 1. By
Richberg, 3¥ € psh(2) NC>(12) s.t.

0<U(z) —P(2) <w(1/2") V2 Q\Q,.

So ¥ extends continuously to 2 and ¥|sq = ®|s0.
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, I he proof of Theorem 3

@ Take ¢: 90 3 z — —2||z||? and let uy be as given by our hypothesis.
@ Define ®(2) := uy, + ||2]|%, z € Q.

@ Define Q, :={z € Q:da(z) > 1/2"}. Let vyp: €, is connected Vv > 1. By
Richberg, 3¥ € psh(2) NC>(12) s.t.

0<U(z) —P(2) <w(1/2") V2 Q\Q,.
So U extends continuously to €2 and ¥|pn = P|sq.

@ Write U(2) := ¥(2) + ||z]|?, 2 € Q. So
(v, HU)(2)v) > |lv]|* V(z,v) € 2 x C™

@ For z close enough to 09, v, > vy s.t. 1/2=FD) < §o(2) < 1/2¥=. For
this z, easy to estimate (&, :=closest boundary point to 2)

U(2)] < w(1/2%) + [((2) + [|2[*) — (2(&2) + [I€:11)]
<w(1/2"2) + Cpw(da(z)) + Cioa(z).
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o I he proof of Theorem 3, cont'd.

@ Because w is a modulus of continuity, and as z was chosen arbitrarily, the
last equality can be cleaned up to give

‘U(Z)| < Cw(cSQ(z)) Vz € ) s.t. 59(,2) < 1/2’/0.
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o I he proof of Theorem 3, cont'd.

@ Because w is a modulus of continuity, and as z was chosen arbitrarily, the
last equality can be cleaned up to give

‘U(Z)| < Cw(cSQ(z)) Vz € ) s.t. 59(,2) < 1/2’/0.

@ At this stage, we need:

RESuULT (Sibony):
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@ Because w is a modulus of continuity, and as z was chosen arbitrarily, the
last equality can be cleaned up to give

‘U(Z)| < Cw(cSQ(z)) Vz € ) s.t. 59(,2) < 1/2’/0.

@ At this stage, we need:

RESULT (Sibony): Let Q C C™ be a domain and z € €. If 3 a -ve psh function u
on ) that is of class C? in a nbd. of z and satisfies

(v, (Hcu)(2)v) > cllv]|* Yv € C", for some ¢ > 0,
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@ Because w is a modulus of continuity, and as z was chosen arbitrarily, the
last equality can be cleaned up to give

‘U(Z)| < Cw(cSQ(z)) Vz € ) s.t. 59(,2) < 1/2’/0.

@ At this stage, we need:

RESULT (Sibony): Let Q C C™ be a domain and z € €. If 3 a -ve psh function u
on ) that is of class C? in a nbd. of z and satisfies

(v, (Hcu)(2)v) > cllv]|* Yv € C", for some ¢ > 0,

then, kq(z;v) > (c/oz)UQHfUH/\u(z)W2 Vv € C", where a > 0 is a univ. const.
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‘U(Z)| < CCU(CSQ(Z)) Vz € ) s.t. 59(,2) < 1/2’/0.

@ At this stage, we need:

RESULT (Sibony): Let Q C C™ be a domain and z € €. If 3 a -ve psh function u
on ) that is of class C? in a nbd. of z and satisfies

(v, (Hcu)(2)v) > cllv]|* Yv € C", for some ¢ > 0,

then, kq(z;v) > (c/oz)UQHfUH/\u(z)W2 Vv € C", where a > 0 is a univ. const.

@ Let U play the role of u in Sibony's result; here ¢ = 1. As Ulyn = 0, by the
maximum principle, U is a -ve p.s.h. function.
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o I he proof of Theorem 3, cont'd.

@ Because w is a modulus of continuity, and as z was chosen arbitrarily, the
last equality can be cleaned up to give

‘U(Z)| < CCU(CSQ(Z)) Vz € ) s.t. 59(,2) < 1/2’/0.

@ At this stage, we need:

RESULT (Sibony): Let Q C C™ be a domain and z € €. If 3 a -ve psh function u
on ) that is of class C? in a nbd. of z and satisfies

(v, (Hcu)(2)v) > cllv]|* Yv € C", for some ¢ > 0,

then, kq(z;v) > (c/oz)UQHfUH/\u(z)W2 Vv € C", where a > 0 is a univ. const.

@ Let U play the role of u in Sibony's result; here ¢ = 1. As Ulyn = 0, by the
maximum principle, U is a -ve p.s.h. function. Thus,

1 \Y2 o
. > - n.
ka(z:0) > (C&) G Vv Eeaxc o
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., I he proof of Theorem 2
Theorem 2 hinges on a result by Ha—Khanh that says that if 2 C C*, n > 2, is a

bdd. pscvx. domain having C*-smooth bdry., if p is a defining function of ), and
m > 2 s.t.
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., I he proof of Theorem 2

Theorem 2 hinges on a result by Ha—Khanh that says that if 2 C C*, n > 2, is a

bdd. pscvx. domain having C*-smooth bdry., if p is a defining function of ), and
m > 2 s.t.

(x) Inbd.U of 052, constants c¢,C > 0 and, for each > 0 sufficiently small, 3 a psh function
w5 on U of class C? s.t. |ps] < 1, and
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., I he proof of Theorem 2

Theorem 2 hinges on a result by Ha—Khanh that says that if 2 C C*, n > 2, is a

bdd. pscvx. domain having C*-smooth bdry., if p is a defining function of ), and
m > 2 s.t.

(x) Inbd.U of 052, constants c¢,C > 0 and, for each > 0 sufficiently small, 3 a psh function
@5 on U of class C? s.t. |p5] <1, and s.t.

(v, (9pps)(2)0) > c(1/8)*/ ™[] Vv € C.
|Des(2)ll < €/,

for each z € p~1((—4,0)),
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Theorem 2 hinges on a result by Ha—Khanh that says that if 2 C C*, n > 2, is a

bdd. pscvx. domain having C*-smooth bdry., if p is a defining function of ), and
m > 2 s.t.

(x) Inbd.U of 052, constants c¢,C > 0 and, for each > 0 sufficiently small, 3 a psh function
@5 on U of class C? s.t. |p5] <1, and s.t.

(v, (9pps)(2)0) > c(1/8)*/ ™[] Vv € C.
|Des(2)ll < €/,

for each z € p~1((—4,0)),

then, for p € C*>*(012), s = 0,1, a € (0, 1], the Dirichlet problem in Theorem 3
has a unique psh solution u € C% (sT)/m((Q)).
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Theorem 2 hinges on a result by Ha—Khanh that says that if 2 C C*, n > 2, is a

bdd. pscvx. domain having C*-smooth bdry., if p is a defining function of ), and
m > 2 s.t.

(x) Inbd.U of 052, constants c¢,C > 0 and, for each > 0 sufficiently small, 3 a psh function
@5 on U of class C? s.t. |p5] <1, and s.t.

(v, (9pps)(2)0) > c(1/8)*/ ™[] Vv € C.
|Des(2)ll < €/,

for each z € p~1((—4,0)),

then, for p € C*>*(012), s = 0,1, a € (0, 1], the Dirichlet problem in Theorem 3
has a unique psh solution u € C% (sT)/m((Q)).

@ The Levi-form cond'n.and S being totally real gives us (x).
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., I he proof of Theorem 2

Theorem 2 hinges on a result by Ha—Khanh that says that if 2 C C*, n > 2, is a

bdd. pscvx. domain having C*-smooth bdry., if p is a defining function of ), and
m > 2 s.t.

(x) Inbd.U of 052, constants c¢,C > 0 and, for each > 0 sufficiently small, 3 a psh function
@5 on U of class C? s.t. |p5] <1, and s.t.

(v, (Heps)(2)v) > ¢ (1/8)*/ ™ ||v||* Vv € C.
[Des(2)|| < C/9,
for each z € p~1((=46,0)),
then, for p € C*>*(012), s = 0,1, a € (0, 1], the Dirichlet problem in Theorem 3
has a unique psh solution u € C% (sT)/m((Q)).
@ The Levi-form cond'n.and S being totally real gives us (x).

@ Theorem 2 is not a corollary of Theorem 3 because if we took
$(z) = —2||z]|* to be Lipschitz as in Theorem 3, then
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Theorem 2 hinges on a result by Ha—Khanh that says that if 2 C C*, n > 2, is a

bdd. pscvx. domain having C*-smooth bdry., if p is a defining function of ), and
m > 2 s.t.

(x) Inbd.U of 052, constants c¢,C > 0 and, for each > 0 sufficiently small, 3 a psh function
@5 on U of class C? s.t. |p5] <1, and s.t.

(v, (Heps)(2)v) > ¢ (1/8)*/ ™ ||v||* Vv € C.
[Des(2)|| < C/9,
for each z € p~1((=46,0)),
then, for p € C*>*(012), s = 0,1, a € (0, 1], the Dirichlet problem in Theorem 3
has a unique psh solution u € C% (sT)/m((Q)).
@ The Levi-form cond'n.and S being totally real gives us (x).

@ Theorem 2 is not a corollary of Theorem 3 because if we took
$(z) = —2||z]|* to be Lipschitz as in Theorem 3, then Ha—Khanh would give
us w(t) =~ t/™ which, per Theorem 3, would give the wrong power.
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., I he proof of Theorem 2

Theorem 2 hinges on a result by Ha—Khanh that says that if 2 C C*, n > 2, is a

bdd. pscvx. domain having C*-smooth bdry., if p is a defining function of ), and
m > 2 s.t.

(x) Inbd.U of 052, constants c¢,C > 0 and, for each > 0 sufficiently small, 3 a psh function
@5 on U of class C? s.t. |p5] <1, and s.t.

(v, (Heps)(2)v) > ¢ (1/8)*/ ™ ||v||* Vv € C.
[Des(2)|| < C/9,
for each z € p~1((=46,0)),
then, for p € C*>*(012), s = 0,1, a € (0, 1], the Dirichlet problem in Theorem 3
has a unique psh solution u € C% (sT)/m((Q)).
@ The Levi-form cond'n.and S being totally real gives us (x).

@ Theorem 2 is not a corollary of Theorem 3 because if we took

$(z) = —2||z]|* to be Lipschitz as in Theorem 3, then Ha—Khanh would give
us w(t) =~ t/™ which, per Theorem 3, would give the wrong power.

@ Ha—Khanh gives the modulus of cont. of ¢ to be~ t2/. Now, just re-do the
last proof with C't2/™ in place of Cw(t) for the right power of 6q(%). ]
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» I he proof of Theorem 1

STEP 1: Showing that 0f) is visible
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For each p € w(9Q), we can construct a C*-smoothly bdd. domain D, s.t.
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STEP 1: Showing that 0f) is visible
For each p € w(9Q), we can construct a C*-smoothly bdd. domain D, s.t.

» 0D, N OSYis open relative to Of).
» Each point of 9D, \ 012 is strongly Levi pscvx.
» We prolong 9D, N S to a closed C?-smooth 1-submanifold on 9D,
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STEP 1: Showing that 0f) is visible
For each p € w(9Q), we can construct a C*-smoothly bdd. domain D, s.t.

» 0D, N OSYis open relative to Of).
» Each point of 9D, \ 012 is strongly Levi pscvx.
» We prolong 9D, N S to a closed C?-smooth 1-submanifold on 9D,

The need for this prolongation is why dimg(.5) must equal 1.
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STEP 1: Showing that 0f) is visible
For each p € w(9Q), we can construct a C*-smoothly bdd. domain D, s.t.

» 0D, N OSYis open relative to Of).
» Each point of 9D, \ 012 is strongly Levi pscvx.

» We prolong 9D, N S to a closed C?-smooth 1-submanifold on 9D,
The need for this prolongation is why dimg(.5) must equal 1.

@ D, satisfies all the conditions of the domain in Theorem 2.
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STEP 1: Showing that 0f) is visible
For each p € w(9Q), we can construct a C*-smoothly bdd. domain D, s.t.

» 0D, N OSYis open relative to Of).

» Each point of 9D, \ 012 is strongly Levi pscvx.

» We prolong 9D, N S to a closed C?-smooth 1-submanifold on 9D,
The need for this prolongation is why dimg(.5) must equal 1.

@ D, satisfies all the conditions of the domain in Theorem 2.

@ Then, the proof of Theorem 2 gives us a function u, € psh(D,) NC(D,)
s.t. up|ap, = 0 and whose modulus of continuity is~ t2/mp.
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» I he proof of Theorem 1

STEP 1: Showing that 0f) is visible
For each p € w(9Q), we can construct a C*-smoothly bdd. domain D, s.t.

» 0D, N OSYis open relative to Of).

» Each point of 9D, \ 012 is strongly Levi pscvx.

» We prolong 9D, N S to a closed C?-smooth 1-submanifold on 9D,
The need for this prolongation is why dimg(.5) must equal 1.

@ D, satisfies all the conditions of the domain in Theorem 2.

@ Then, the proof of Theorem 2 gives us a function u, € psh(D,) NC(D,)
s.t. up|ap, = 0 and whose modulus of continuity is~ t2/mp.

@ Let V), be a nbd. of p that is so small that dp_(2) = da(z) Vz € V, N2 and
s.t. (OV,N0OD,) € 0D, N .
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5 I he proof of Theorem 1, cont'd.

@ Write ¢ := inf,c(pv,nq) Up(2).
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5 I he proof of Theorem 1, cont'd.

@ Write ¢ := inf,c(gv,nq) up(2). Define U, : @ — (—o0, 0] by

up(2), if z €V, N Dy,
Up(z) :=  max(c,up(z)) if 2€Q\Vp,
and extended to OV}, N (2 to be u.s.c.
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5 I he proof of Theorem 1, cont'd.

@ Write ¢ := inf,c(gv,nq) up(2). Define U, : @ — (—o0, 0] by

up(2), if z €V, N Dy,
max(c, up(2)) if 2€Q\Vp,
and extended to OV}, N (2 to be u.s.c.

Up(2) :

@ U, satisfies the conditions of Sibony’s theorem (for z € V,, N ). As w, has
modulus of continuity & t2/™» it follows by construction that:
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5 I he proof of Theorem 1, cont'd.

@ Write ¢ := inf,c(gv,nq) up(2). Define U, : @ — (—o0, 0] by

up(2), if z €V, N Dy,
Up(z) :=  max(c,up(z)) if 2€Q\Vp,
and extended to OV}, N (2 to be u.s.c.

@ U, satisfies the conditions of Sibony’s theorem (for z € V,, N ). As w, has
modulus of continuity & t2/™» it follows by construction that:

ka(z:v) > (1/ca) 2ol / (Ba(2)) ™ Y(z,v) € (V,NQ) x C".
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5 I he proof of Theorem 1, cont'd.

@ Write ¢ := inf,c(gv,nq) up(2). Define U, : @ — (—o0, 0] by

up(2), if z €V, N Dy,
Up(z) :=  max(c,up(z)) if 2€Q\Vp,
and extended to OV}, N (2 to be u.s.c.

@ U, satisfies the conditions of Sibony’s theorem (for z € V,, N ). As w, has
modulus of continuity & t2/™» it follows by construction that:

ka(z:v) > (1/ca) 2ol / (Ba(2)) ™ Y(z,v) € (V,NQ) x C".

@ |t follows from a result by Zimmer—B. that if, for each p € 0€2, the above
estimate holds and, given o € 2, 3C), > 0,0, > 1/2 s.t.

Kaq(o,2z) < Cp + aplog (1/0a(z)) Vz € V,N1Q,
then,
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@ Write ¢ := inf,c(gv,nq) up(2). Define U, : @ — (—o0, 0] by

up(2), if z €V, N Dy,
Up(z) :=  max(c,up(z)) if 2€Q\Vp,
and extended to OV}, N (2 to be u.s.c.

@ U, satisfies the conditions of Sibony’s theorem (for z € V,, N ). As w, has
modulus of continuity & t2/™» it follows by construction that:

ka(z:v) > (1/ca) 2ol / (Ba(2)) ™ Y(z,v) € (V,NQ) x C".

@ |t follows from a result by Zimmer—B. that if, for each p € 0€2, the above
estimate holds and, given o € 2, 3C), > 0,0, > 1/2 s.t.

Kaq(o,2z) < Cp + aplog (1/0a(z)) Vz € V,N1Q,
then, 0fQ is visible.
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5 I he proof of Theorem 1, cont'd.

@ Write ¢ := inf,c(gv,nq) up(2). Define U, : @ — (—o0, 0] by

up(2), if z €V, N Dy,
Up(z) :=  max(c,up(z)) if 2€Q\Vp,
and extended to OV}, N (2 to be u.s.c.

@ U, satisfies the conditions of Sibony’s theorem (for z € V,, N ). As w, has
modulus of continuity & t2/™» it follows by construction that:

ka(z:v) > (1/ca) 2ol / (Ba(2)) ™ Y(z,v) € (V,NQ) x C".

@ |t follows from a result by Zimmer—B. that if, for each p € 0€2, the above
estimate holds and, given o € 2, 3C), > 0,0, > 1/2 s.t.
Kaq(o,2z) < Cp + aplog (1/0a(z)) Vz € V,N1Q,
then, 0f) is visible.

@ The latter estimate is almost trivial because 0X) is C?2-smooth. This
establishes STEP I.
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. The proof of Theorem 1, cont'd.

STEP 2: Completing the proof
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. The proof of Theorem 1, cont'd.

STEP 2: Completing the proof
We need the following result:

PRrROPOSITION: Let 2 C C™ be a Kobayashi hyperbolic domain and suppose 0f2
IS visible. \
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. The proof of Theorem 1, cont'd.

STEP 2: Completing the proof
We need the following result:

PRrROPOSITION: Let 2 C C™ be a Kobayashi hyperbolic domain and suppose 0f2
s visible. Then, € is hyperbolically imbedded in C".

We thus conclude from STEP I that €2 is hyperbolically imbedded in C™.
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. The proof of Theorem 1, cont'd.

STEP 2: Completing the proof
We need the following result:

PRrROPOSITION: Let 2 C C™ be a Kobayashi hyperbolic domain and suppose 0f2
s visible. Then, € is hyperbolically imbedded in C". J

We thus conclude from STEP I that Q2 is hyperbolically imbedded in C™. Then,
mildly adapting a result by Joseph—Kwack — which removes the relative
compactness constraint of Kiernan's result—our result follows. []
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. The proof of Theorem 1, cont'd.

STEP 2: Completing the proof
We need the following result:

PRrROPOSITION: Let 2 C C™ be a Kobayashi hyperbolic domain and suppose 0f2
s visible. Then, € is hyperbolically imbedded in C".

We thus conclude from STEP I that Q2 is hyperbolically imbedded in C™. Then,
mildly adapting a result by Joseph—Kwack — which removes the relative
compactness constraint of Kiernan's result—our result follows. []

THANK YOU!
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