Segre and Chern forms associated with singular metrics

Mats Andersson

Joint work in progress with Richard Lärkäng

Wuppertal 2024-10-22

Segre and Chern forms of a Hermitian line bundle

If $E \to X$ Hermitian line bundle and e^{ψ} the metric in a local frame, then

$$c(E) = 1 - dd^c\psi$$
, $s(E) = \frac{1}{c(E)} = 1 + dd^c\psi + (dd^c\psi)^2 + \cdots$

are the Chern form and the Segre form, respectively.

Segre and Chern forms of a Hermitian line bundle

If $E \to X$ Hermitian line bundle and e^{ψ} the metric in a local frame, then

$$c(E) = 1 - dd^c\psi$$
, $s(E) = \frac{1}{c(E)} = 1 + dd^c\psi + (dd^c\psi)^2 + \cdots$

are the Chern form and the Segre form, respectively.

If $E' \to X$ the same line bundle but with metric φ' , then $v = \varphi' - \varphi$ is global function and

$$dd^{c}v = c_{1}(E') - c_{1}(E) = c(E) - c(E').$$

Thus $c_1(E)$ and $s_k(E)$ determine Bott-Chern classes $\hat{c}_1(E)$ and $\hat{s}_k(E)$.

Vector bundle with singular metrics

In LRSW (based on LRRS) vector bundles $E \to X$ with Griffiths negative metric ($\log |\cdot|$ psh on the manifold E) with analytic singularities. They defined Segre and Chern forms s(E) and c(E).

Vector bundle with singular metrics

In LRSW (based on LRRS) vector bundles $E \to X$ with Griffiths negative metric ($\log |\cdot|$ psh on the manifold E) with analytic singularities. They defined Segre and Chern forms s(E) and c(E).

Definition

We say that the metric is *admissible* if $\log |\cdot|$ qpsh (quasi-psh) with analytic singularities.

Notice that if E is admissible, then any subbundle is admissible. Pullback of admissible bundle is admissible. Direct sums preserve admissibility, etc.

Example

Model case: Let E, F be vector bundles over $X, g: E \rightarrow F$ a holomorphic morphism. If F has a smooth Hermitian metric, then

$$|\alpha|^2 = |g\alpha|^2$$

is an admissible singular metric on E.

This is not immediate but an argument is required.

Example

E is a line bundle, s_j global sections of E^* . The singular metric $|\cdot|e^{\psi}$ with $\psi = \log \sum_j |s_j|^2$ is of this kind. Take g as $\xi \mapsto \bigoplus_j \xi s_j$ and F a trivial bundle.

Two aims:

(i) Extend LRSW to admissible bundles.

Two aims:

- (i) Extend LRSW to admissible bundles.
- (ii) Describe the residue term of s(E) and c(E).

Two aims:

- (i) Extend LRSW to admissible bundles.
- (ii) Describe the residue term of s(E) and c(E).

Besides LRRS and LRSW, we use ideas from AESWY and A

Let $E \to X$ be a vector bundle with an admissible singular metric, and let $E_0 \to X$ be the same bundle but with a smooth reference metric.

There is an associated Segre form s(E) (in general a current) such that the following holds:

Let $E \to X$ be a vector bundle with an admissible singular metric, and let $E_0 \to X$ be the same bundle but with a smooth reference metric.

There is an associated Segre form s(E) (in general a current) such that the following holds:

(i) $dd^cW = s(E) - s(E_0)$ (thus s(E) defined the expected Bott-Chern class)

Let $E \to X$ be a vector bundle with an admissible singular metric, and let $E_0 \to X$ be the same bundle but with a smooth reference metric.

There is an associated Segre form s(E) (in general a current) such that the following holds:

- (i) $dd^cW = s(E) s(E_0)$ (thus s(E) defined the expected Bott-Chern class)
- (ii) s(E) is the expected form where the metric is smooth (or sufficiently regular)

Let $E \to X$ be a vector bundle with an admissible singular metric, and let $E_0 \to X$ be the same bundle but with a smooth reference metric.

There is an associated Segre form s(E) (in general a current) such that the following holds:

- (i) $dd^cW = s(E) s(E_0)$ (thus s(E) defined the expected Bott-Chern class)
- (ii) s(E) is the expected form where the metric is smooth (or sufficiently regular)
- (iii) If $\pi: X' \to X$ is a modification, then π^*E is admissible and

$$\pi_*s(\pi^*E)=s(E).$$

Main result, continued

(iv) $\operatorname{mult}_x s_k(E)$ are non-negative integers for each x and k (Lelong numbers if $s_k(E) \geq 0$). Independent of E_0 .

Main result, continued

(iv) $\operatorname{mult}_X s_k(E)$ are non-negative integers for each x and k (Lelong numbers if $s_k(E) \geq 0$). Independent of E_0 .

(v) For k = 0, 1, 2, ... we have (Siu type decomposition)

$$s_k(E) = \sum a_j[Z_j^E] + N_k^E$$

where Z_j have codim k

and $\operatorname{mult}_{X} N_{k}^{E}$ vanishes outside a set of codimension $\geq k + 1$.

Chern and Segre forms, smooth metric, differential geometric definition

Let Θ be the curvature form associated with a smooth metric, an $\operatorname{End}(E)$ -valued (1,1)-form.

Chern and Segre forms, smooth metric, differential geometric definition

Let Θ be the curvature form associated with a smooth metric, an $\operatorname{End}(E)$ -valued (1,1)-form.

Then

$$c(E) = \det \left(I + \frac{1}{2\pi i}\Theta\right) = c_0(E) + c_1(E) + \cdots$$
 (0.1)

Obs $c_0(E) = 1$ so that

$$s(E) := 1/c(E) \tag{0.2}$$

is well-defined.

Chern and Segre forms, smooth metric, differential geometric definition

Let Θ be the curvature form associated with a smooth metric, an $\operatorname{End}(E)$ -valued (1,1)-form.

Then

$$c(E) = \det \left(I + \frac{1}{2\pi i}\Theta\right) = c_0(E) + c_1(E) + \cdots$$
 (0.1)

Obs $c_0(E) = 1$ so that

$$s(E) := 1/c(E) \tag{0.2}$$

is well-defined.

A challenge to use (0.1) when metric singular so that Θ not smooth.

The idea in LRRS is to use definition in algebraic geometry:

 $E \to X$ Hermitian vector bundle, in a local trivialization $E = X \times \mathbb{C}^r$. Let

$$p \colon \mathbb{P}(E) \to X$$

be the projectivization (there are two conventions) so that locally $\mathbb{P}(E) = X \times \mathbb{P}(\mathbb{C}^r)$.

 $E \to X$ Hermitian vector bundle, in a local trivialization $E = X \times \mathbb{C}^r$. Let

$$p \colon \mathbb{P}(E) \to X$$

be the projectivization (there are two conventions) so that locally $\mathbb{P}(E) = X \times \mathbb{P}(\mathbb{C}^r)$.

Consider $p^*E \to \mathbb{P}(E)$ with the tautological sub(line)bundle $L_E \to \mathbb{P}(E)$ so that the fiber over $(x, [\alpha])$ is the line $\{\lambda \alpha\}$ in $(p^*E)_{(x, [\alpha])} = \mathbb{C}^r$.

 $E \to X$ Hermitian vector bundle, in a local trivialization $E = X \times \mathbb{C}^r$. Let

$$p \colon \mathbb{P}(E) \to X$$

be the projectivization (there are two conventions) so that locally $\mathbb{P}(E) = X \times \mathbb{P}(\mathbb{C}^r)$.

Consider $p^*E \to \mathbb{P}(E)$ with the tautological sub(line)bundle $L_E \to \mathbb{P}(E)$ so that the fiber over $(x, [\alpha])$ is the line $\{\lambda \alpha\}$ in $(p^*E)_{(x, [\alpha])} = \mathbb{C}^r$.

 L_E has an induced (smooth) metric and hence $s(L_E)$ is a smooth form on $\mathbb{P}(E)$.

Definition

$$s(E) := p_*(s(L_E)) \tag{0.3}$$

Obs a smooth form since *p* submersion.

 $E \to X$ Hermitian vector bundle, in a local trivialization $E = X \times \mathbb{C}^r$. Let

$$p \colon \mathbb{P}(E) \to X$$

be the projectivization (there are two conventions) so that locally $\mathbb{P}(E) = X \times \mathbb{P}(\mathbb{C}^r)$.

Consider $p^*E \to \mathbb{P}(E)$ with the tautological sub(line)bundle $L_E \to \mathbb{P}(E)$ so that the fiber over $(x, [\alpha])$ is the line $\{\lambda \alpha\}$ in $(p^*E)_{(x, [\alpha])} = \mathbb{C}^r$.

 L_E has an induced (smooth) metric and hence $s(L_E)$ is a smooth form on $\mathbb{P}(E)$.

Definition

$$s(E) := p_*(s(L_E)) \tag{0.3}$$

Obs a smooth form since *p* submersion.

Non-trivial fact: The two definitions of s(E) coincide!

Second definition has more 'well-organized' products:

Non-trivial fact: The two definitions of s(E) coincide!

Second definition has more 'well-organized' products:

If

$$\psi(\mathbf{X}, [\alpha]) := \log |\alpha|^2$$

(well-defined up to pluriharmonic), then

$$s(L_E) = rac{1}{c(L_E)} = rac{1}{1 - dd^c \psi} = \sum_{\ell=0}^{\infty} (dd^c \psi)^\ell.$$

Non-trivial fact: The two definitions of s(E) coincide!

Second definition has more 'well-organized' products:

If

$$\psi(\mathbf{X}, [\alpha]) := \log |\alpha|^2$$

(well-defined up to pluriharmonic), then

$$s(L_E) = rac{1}{c(L_E)} = rac{1}{1 - dd^c \psi} = \sum_{\ell=0}^{\infty} (dd^c \psi)^\ell.$$

so that

$$s(E) = p_* ig(\sum_{\ell=0}^{\infty} (dd^c \psi)^\ell ig).$$

More suitable if ψ is non-smooth!

 $s_0(E) = 1$ so s(E) - 1 has positive bidegree

 $s_0(E) = 1$ so s(E) - 1 has positive bidegree so the Chern form is

$$c(E) := \frac{1}{s(E)} = \frac{1}{1 + (s(E) - 1)} = \sum_{k=0}^{\infty} (-1)^k (s(E) - 1)^k$$

(finite sum!)

Singular metrics on E

If E has a singular metric, $\psi = \log |\alpha|^2$ is still defined (up to pluriharmonic) on $\mathbb{P}(E)$.

Singular metrics on E

If E has a singular metric, $\psi = \log |\alpha|^2$ is still defined (up to pluriharmonic) on $\mathbb{P}(E)$.

Lemma

If E is admissible, then ψ is qpsh with analytic singularities.

Singular metrics on E

If E has a singular metric, $\psi = \log |\alpha|^2$ is still defined (up to pluriharmonic) on $\mathbb{P}(E)$.

Lemma

If E is admissible, then ψ is qpsh with analytic singularities.

Analytic singularities means that locally $\psi = \log |s|^2 + bdd$, where s is a holomorphic tuple.

Definition of s(E)

 $Z' \subset \mathbb{P}(E)$ the set where ψ is not locally bounded. Generalized Monge-Ampère products, defined recursively

$$[dd^c\psi]^0=\mathbf{1},\quad [dd^c\psi]^{\ell+1}=dd^c(\psi\mathbf{1}_{\mathbb{P}(E)\setminus Z'}[dd^c\psi]^\ell).$$

Definition of s(E)

 $Z' \subset \mathbb{P}(E)$ the set where ψ is not locally bounded. Generalized Monge-Ampère products, defined recursively

$$[dd^c\psi]^0=\mathbf{1},\quad [dd^c\psi]^{\ell+1}=dd^c(\psi\mathbf{1}_{\mathbb{P}(E)\setminus Z'}[dd^c\psi]^\ell).$$

Obs

$$\langle dd^c \psi \rangle^\ell = \mathbf{1}_{\mathbb{P}(E) \setminus Z'} [dd^c \psi]^\ell$$

is the non-pluripolar Monge-Ampère product.

Definition of s(E) (continued)

We use the notation

$$rac{1}{1-\langle dd^c\psi
angle}=\sum_{\ell=0}^{\infty}\langle dd^c\psi
angle^\ell$$

Definition of s(E) (continued)

We use the notation

$$rac{1}{1-\langle dd^c\psi
angle}=\sum_{\ell=0}^{\infty}\langle dd^c\psi
angle^\ell$$

Let ψ_0 be associated with E_0 . We define

$$s(E) = p_* \left(\frac{1}{1 - \langle dd^c \psi \rangle} + \frac{1}{1 - dd^c \psi_0} \mathbf{1}_{Z'} \sum_{\ell=1}^{\infty} [dd^c \psi]^{\ell} \right)$$
(0.4)

Segre forms as homomorphisms

The current s(E) is a *quasi-cycle*, an element in the \mathbb{Z} -module $\mathcal{QZ}(X)$, an extension of the \mathbb{Z} -module of analytic cycles $\mathcal{Z}(X)$.

Segre forms as homomorphisms

The current s(E) is a *quasi-cycle*, an element in the \mathbb{Z} -module $\mathcal{QZ}(X)$, an extension of the \mathbb{Z} -module of analytic cycles $\mathcal{Z}(X)$.

 $\mathcal{QZ}(X)$ is \mathbb{Z} -module generated by all currents of the form $\tau_*\gamma$, where $\tau\colon W\to X$ proper and

$$\gamma = dd^c b_1 \wedge \ldots \wedge dd^c b_t$$

 b_j qpsh bounded metrics on line bundles $L_j \rightarrow W$.

Segre forms as homomorphisms

The current s(E) is a *quasi-cycle*, an element in the \mathbb{Z} -module $\mathcal{QZ}(X)$, an extension of the \mathbb{Z} -module of analytic cycles $\mathcal{Z}(X)$.

 $\mathcal{QZ}(X)$ is \mathbb{Z} -module generated by all currents of the form $\tau_*\gamma$, where $\tau\colon W\to X$ proper and

$$\gamma = dd^c b_1 \wedge \ldots \wedge dd^c b_t$$

 b_i qpsh bounded metrics on line bundles $L_i \rightarrow W$.

Lemma

There is a homomorphism

$$\mathcal{QZ}(X) \rightarrow \mathcal{QZ}(X), \quad \mu \mapsto s(E)\mu,$$

such that s(E)1 = s(E), $s_0(E) = I$, and $s(E)\mu$ is multiplication by s(E) where it is smooth.

Chern form associated with an admissible singular metric

Since s(E) - I has positive bidegree

$$c(E) = \sum_{\ell=0} (-1)^{\ell} (s(E) - I)^{\ell}$$

is a well-defined homomorphism $\mathcal{QZ}(X) \to \mathcal{QZ}(X)$ and

$$c(E) \circ s(E) = s(E) \circ c(E) = I$$

Chern form associated with an admissible singular metric

Since s(E) - I has positive bidegree

$$c(E) = \sum_{\ell=0} (-1)^{\ell} (s(E) - I)^{\ell}$$

is a well-defined homomorphism $QZ(X) \rightarrow QZ(X)$ and

$$c(E) \circ s(E) = s(E) \circ c(E) = I$$

Natural to define c(E), acting on 1, as the Chern form of E.

Theorem

If E is admissible, the Chern form c(E) has the same properties as s(E) in the previous theorem.

Obs that $v = \psi - \psi_0$ is a global function on $\mathbb{P}(E)$.

Obs that $v = \psi - \psi_0$ is a global function on $\mathbb{P}(E)$. In $\mathbb{P}(E) \setminus Z'$ we have

$$dd^c \left(v \frac{1}{1 - dd^c \psi_0} \frac{1}{1 - \langle dd^c \psi \rangle}\right) = \frac{1}{1 - \langle dd^c \psi \rangle} - \frac{1}{1 - dd^c \psi_0}.$$

Obs that $v = \psi - \psi_0$ is a global function on $\mathbb{P}(E)$.

In $\mathbb{P}(E) \setminus Z'$ we have

$$dd^{c}\left(v\frac{1}{1-dd^{c}\psi_{0}}\frac{1}{1-\langle dd^{c}\psi\rangle}\right)=\frac{1}{1-\langle dd^{c}\psi\rangle}-\frac{1}{1-dd^{c}\psi_{0}}.$$

The residue is

$$\mathbf{1}_{Z'}dd^c\big(v\frac{1}{1-dd^c\psi_0}\frac{1}{1-\langle dd^c\psi\rangle}\big)=\mathbf{1}_{Z'}dd^c\big(\psi\frac{1}{1-dd^c\psi_0}\frac{1}{1-\langle dd^c\psi\rangle}\big)=$$

$$\frac{1}{1-dd^c\psi_0}\mathbf{1}_{Z'}dd^c\big(\psi\sum_{\ell=0}^{\infty}\langle dd^c\psi\rangle^\ell\big)=\frac{1}{1-dd^c\psi_0}\mathbf{1}_{Z'}\sum_{\ell=1}^{\infty}[dd^c\psi]^\ell.$$

Obs that $v = \psi - \psi_0$ is a global function on $\mathbb{P}(E)$.

In $\mathbb{P}(E) \setminus Z'$ we have

$$dd^{c}\left(v\frac{1}{1-dd^{c}\psi_{0}}\frac{1}{1-\langle dd^{c}\psi\rangle}\right)=\frac{1}{1-\langle dd^{c}\psi\rangle}-\frac{1}{1-dd^{c}\psi_{0}}.$$

The residue is

$$\mathbf{1}_{Z'}dd^c\big(v\frac{1}{1-dd^c\psi_0}\frac{1}{1-\langle dd^c\psi\rangle}\big)=\mathbf{1}_{Z'}dd^c\big(\psi\frac{1}{1-dd^c\psi_0}\frac{1}{1-\langle dd^c\psi\rangle}\big)=$$

$$\frac{1}{1-dd^c\psi_0}\mathbf{1}_{Z'}dd^c\big(\psi\sum_{\ell=0}^{\infty}\langle dd^c\psi\rangle^\ell\big)=\frac{1}{1-dd^c\psi_0}\mathbf{1}_{Z'}\sum_{\ell=1}^{\infty}[dd^c\psi]^\ell.$$

Taking p_* we get (i).

An example

Example

Let $X = \mathbb{C}^2_X$, $E = X \times \mathbb{C}^2_\alpha$, $F = X \times \mathbb{C}^2$, with trivial metric, and E with the singular metric from $g \colon E \to F$ defined by

$$\begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix} \tag{0.5}$$

Then

$$s(E) = 1 + s_1(E) + s_2(E) = 1 + [x_1x_2 = 0] + [x_1 = x_2 = 0].$$

Thank you for your attention!